Statistical
methods are a key part of data science, yet few data scientists have
formal statistical training. Courses and books on basic statistics
rarely cover the topic from a data science perspective. The second
edition of this popular guide adds comprehensive examples in Python,
provides practical guidance on applying statistical methods to data
science, tells you how to avoid their misuse, and gives you advice on
what’s important and what’s not.
Many data science
resources incorporate statistical methods but lack a deeper statistical
perspective. If you’re familiar with the R or Python programming
languages and have some exposure to statistics, this quick reference
bridges the gap in an accessible, readable format.
With this book, you’ll learn:
- Why exploratory data analysis is a key preliminary step in data science
- How random sampling can reduce bias and yield a higher-quality dataset, even with big data
- How the principles of experimental design yield definitive answers to questions
- How to use regression to estimate outcomes and detect anomalies
- Key classification techniques for predicting which categories a record belongs to
- Statistical machine learning methods that "learn" from data
- Unsupervised learning methods for extracting meaning from unlabeled data.